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Abstract. Line shape parameters of the intercombination line 53P1 − 51S0 of cadmium (λ = 326.1 nm)
perturbed by noble gas atoms are calculated by the quantum close-coupling method. Calculations are based
on the ab initio potential curves determined by Czuchaj and Stoll. The obtained values of width and shift
coefficients are compared with experimental data and some other theoretical results.

PACS. 32.70.-n Intensities and shapes of atomic spectral lines – 34.50.-s Scattering of atoms and molecules

1 Introduction

The most widely applied theory of pressure broadening
of spectral lines is the semiclassical impact approach in-
troduced by Anderson [1] with further extensions and im-
provements (for details see the comprehensive reviews by
Allard and Kielkopf [2] and by Peach [3]). The collision
trajectories are described classically and the semiclassi-
cal equations that determine the S-matrix are solved.
The fully quantum theory which relates pressure broad-
ening to the emitter–perturber interaction potential via
quantum-mechanical treatment of collision dynamics is
also well developed [4–7]. Since the pioneering work of
Shafer and Gordon [6] on the rotational Raman spectrum
of H2 perturbed by He, the rigorous theory has been used
quite successfully to predict the line width and shift of
a few atomic [8–11] as well as molecular [12–15] systems.
Motivated by the recent experimental investigations by
Bielski’s group [16–24] we have undertaken a companion
fully quantum mechanical close-coupling studies on the
53P1 − 51S0 intercombination line of 114Cd perturbed by
noble gas atoms.

2 Spectral line shape expressions

The quantum formalism for collisional broadening of spec-
tral lines in which both the emitter and perturber are
treated quantum mechanically has been discussed by
many authors both for ro-vibrational molecular spectra
as well as for atomic ones. Only the relevant features of
the theory will be summarized here.

The spectral line shape function I(ω) is usually defined
as the Fourier transform of the autocorrelation function of
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the coupling operator between radiating system and the
external electromagnetic field. According to the general
relaxation theory of gas mixtures developed by Fano [25]
and elaborated in details for the pressure broadening and
shift of spectral lines by Ben-Reuven [26] the line shape
function is given by

I(ω) = −π−1Im Trs

{
A (ω − Ls

o − Λ)−1 ρsA
}
, (1)

where Ls
o is the Liouville operator for the unperturbed

active system, ρs is the corresponding density operator,
A is the coupling operator between the system and the
external field, and Λ is the relaxation operator which de-
scribe the influence of the bath on the system of interest.
Subscripts s and b refer to the system and bath variables,
respectively. In general, Λ is a complicated operator with
respect to the system variables and depends on radiation
frequency, ω, and the density of the perturber gas, nb.
Under the commonly applied impact approximation and
including the effects of only binary collisions Λ is indepen-
dent of ω and depends linearly on nb, and is given by [25]

Λ = nb Trb {ρbm} . (2)

where m is the binary collision operator defined as

m = Tα − T+
β + 2πi TαT

+
β . (3)

Here Tα and Tβ are the transition operators, which de-
scribe scattering in the initial and final spectroscopic
states, respectively. The T operators are evaluated at the
same kinetic energy. The trace in equation (1) can be con-
veniently evaluated in terms of a basis of eigenstates of
the unperturbed emitter. Applying this basis we can write
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explicitly the line shape function in the form

I(ω) = −π−1Im
∑

α,α′,β,β′
A∗

α′β′ [ω − ωαβ

− inb 〈vσs(α′β′, αβ)〉]−1ραAαβ , (4)

where Aαβ is the reduced matrix element of the opera-
tor A, v is the relative velocity before collision, ρα is the
Boltzmann distribution factor for the emitter level pop-
ulations, and the acute brackets denote the thermal av-
eraging over the relative kinetic energy. In equation (4)
we have expressed the operator m by the phenomenologi-
cal line broadening cross-section, σs. The initial and final
spectroscopic states after collision are indicated by primes.

Expression (4) gives the shape of an entire band. At
low pressure when individual lines are well resolved only
the diagonal cross-sections are important and in such a
case the shape of a spectral band appears as a sum of
Lorentzian lines, for which the line width is given by the
real part of the cross-section

Γαβ = nbRe〈vσs(αβ, αβ)〉 (5)

and the line shift is given by the imaginary part

∆αβ = −nbIm〈vσs(αβ, αβ)〉. (6)

The off-diagonal elements of σs describe the interfer-
ence of overlapping lines and result in deviation from the
Lorentzian shape.

Equations (4–6) are the fundamental relationships be-
tween the collision dynamics and the spectral line profiles.
The required S or T matrices which contain the relevant
scattering information could be determined by the exact
quantum close-coupling method as well as by approximate
scattering methods quantum or semiclassical.

In this paper we consider the intermultiplet transitions
involving initial and final emitter levels characterized by
ji and jf , respectively. The respective expression for the
pressure broadening cross-section is of the form [6,7]

σs(jijf , j′ij
′
f ) =

π

k2
j

∑
ll′JiJf

(2Ji + 1)(2Jf + 1)(−1)l+l′
{
j′i q j

′
f

Jf l′ Ji

}{
ji q jf
Jf l Ji

}

×
[
δll′δjiji′ δjf jf′ − SJi(j′il

′, jil)S∗Jf (j′f l
′, jf l)

]
. (7)

Here l and J are the quantum numbers for the orbital
and total angular momenta, respectively; q is the tensor
rank of spectral transition (for dipole spectra q = 1). Sub-
scripts i and f label the initial and final spectral levels;
unprimed and primed quantities refer to values before and
after a collision, respectively.

3 Scattering equations

The quantum formalism for inelastic collision of an atom
with structureless particle has been provided by Mies [27]

and Alexander and co-workers [28]. Only the relevant de-
tails will be reviewed here.

The total Hamiltonian of the diatomic system consid-
ered here is

H(R, r) = − �
2

2µR2

d

dR

(
R2 d

dR

)
+Hrot(R̂)

+ VLS(R, r) +Ho
EP (R, r), (8)

where µ is the reduced mass, R is the interatomic dis-
tance, r represents the set of electronic coordinates, Hrot

is the Hamiltonian for the orbital motion of the two nu-
clei, the last term represents the electronic Hamiltonian of
the isolated emitter and perturber atoms and their mutual
electrostatic interaction:

Ho
EP (R, r) = HE(r) +HP (r) + V (R, r). (9)

The fine-structure term, VLS , has been separated to facil-
itate discussion of the interaction matrix elements.

Following the standard close-coupling (CC) method of
Arthurs and Dalgarno [29] the total scattering wave func-
tion is expanded in terms of the channel states that are
eigenfunctions of the total angular momentum of the col-
lision system, namely

ψJM (r,R) = R−1
∑
jl

F JM
jl (R)|R; jlJM〉, (10)

where the channel states |R; jlJM〉 are constructed ac-
cording to the Hund’s case (e) coupling scheme and are
given by [27,28]

|R; jlJM〉 =
∑
ΛΣΩ

(−1)j+ΩC(Jjl;−ΩΩ0)

× C(LSj;ΛΣΩ)|JMΩ〉|R,ΛΣ〉, (11)

where C(...; ...) are the Clebsch-Gordan coefficients,
|JMΩ〉 are the normalized symmetric-top wave functions:

|JMΩ〉 =
(

2J + 1
4π

)1/2

DJ∗
MΩ(φ, θ, 0), (12)

and |R,ΛΣ〉 designate the electronic states of the emitter-
perturber pair which define the corresponding adiabatic
potentials

Ho
EP |R,ΛΣ〉 = 2S+1WΛ(R)|R,ΛΣ〉. (13)

Asymptotically, when V → 0, the total electronic Hamil-
tonian becomes diagonal with good quantum numbers
L, S, j, l, J,M , which denote, respectively, the electronic,
spin and total angular momentum of the emitter, the
emitter-perturber orbital angular momentum, and finally,
the total angular momentum and its projection along a
space-fixed axis. The projections of L, S and J along the
emitter-perturber axis are traditionally designated by Λ,
Σ and Ω, respectively.

Following the previous treatments [8,28] on collisions
involving atoms in multiplet electronic states we assume
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that L remains a good quantum number at all values of R.
In this so-called “pure precession” limit [30] the rotational
and spin-orbit Hamiltonians are diagonal in the basis (11)
with matrix elements given by

〈jlJM |Hrot + VLS |j′l′JM〉 =

δjj′δll′

[
�

2

2µR2
l(l+ 1) + εj(R)

]
, (14)

where in our calculations the energies εj(R) have been
replaced by their asymptotic values εj(∞), i.e. the corre-
sponding fine-structure energy levels of the emitter atom.
The energy values used for the fine structure splitting are
those reported by Moore [31], i.e. ε(5 3P1) − ε(5 3P0) =
542.113 cm−1 and ε(5 3P1)− ε(5 3P2) = −1170.866 cm−1.

Since L is not a good quantum number at small R the
pure precession approximation will become, in general, in-
creasingly less accurate asR decreases. To get some insight
into mechanism and validity of this approximation we per-
formed a test calculations replacing the rotational term
l(l+ 1)/R2 by J(J + 1)/R2 for all channels. The changes
in the broadening cross-sections (7) were in the range of
0.2% for Cd–He to 0.1% for Cd–Xe. Similar observation
has been made previously for He–He collisions [8]. One
might therefore expect that at least for collisions involv-
ing closed shell partner the pure precession approximation
is in a great measure justified.

Within the commonly applied Born-Oppenheimer ap-
proximation the R-dependent expansion coefficients F (R)
are solutions to a set of coupled equations [29][
d2

dR2
+ k2

j − l(l + 1)
R2

]
F J

jl(R) =
2µ
�2

∑
j′l′

V J
jlj′l′(R)F J

j′l′(R),

(15)
where kj is the wavenumber in the (jl) channel defined as

k2
j =

2µ
�2

[E − εj(∞)], (16)

and the coupling matrix elements are [8,27,28]

V J
jlj′ l′(R) =

∑
Ω

(−1)j′−jC(Jjl;−ΩΩ0)C(Jj′l′;−ΩΩ0)

×
∑
ΛΣ

C(LSj;ΛΣΩ)C(LSj′;ΛΣΩ) 2S+1WΛ(R). (17)

From the asymptotic behavior of the solutions to the CC
equations (15) one can extract the S-matrix elements in
the total J representation [29]. To calculate the broaden-
ing cross-sections from expression (7) one requires the S-
matrices for lower and upper states evaluated at the same
value of relative kinetic energy. The computed S-matrices
can also be exploited to calculate the degeneracy averaged
cross-section for the j → j′ intramultiplet transition from
the expression [29]

σj→j′ =
π

k2
j (2j + 1)

∑
Jll′

(2J + 1)|δll′ − SJ
jlj′l′ |2. (18)

4 Computational details and results
for the Cd(53P1 − 51S0) line

For the considered line the CC equations are required only
for 1S and 3P multiplets. The explicitly evaluated poten-
tial matrix elements (16) are given by [8,28]:

For the 1S0 level L = 0, S = 0, j = 0 so that Λ = 0 and

Vjlj′ l′(R) = δjj′δll′
1WΣ(R). (19)

For the 3Pj levels L = 1, S = 1 and j = 0, 1, 2 so that
|Λ| = 0, 1 and

Vjlj′l′(R) = δjj′δll′
1WΠ(R)

+ Cjlj′ l′
[
3WΣ(R) −3 WΠ(R)

]
, (20)

where

Cjlj′l′ =
∑
Ω

(−1)j′−jC(Jjl;−ΩΩ0)C(Jj′l′; 0ΩΩ)

× C(11j; 0ΩΩ)C(11j′; 0ΩΩ). (21)

In equations (19, 20) 1WΣ ,
3WΣ and 3WΠ are the adia-

batic electrostatic potential curves of Σ and Π symmetry
which arise from interaction of Cd atom in the ground and
excited states with neutral perturber.

The present calculations are based on potential curves
determined by Czuchaj and Stoll [32] within a pseu-
dopotential self-consistent field/configuration interaction
(SCF/CI) method. In this approach only the valence elec-
trons of the interacting atoms have been explicitly treated
by quantum-chemical calculations while the atomic cores
were modelled by the l-dependent pseudopotentials. The
fairly good agreement of the theoretical and experimen-
tal values of spectroscopic parameters (De, Re, ωe) indi-
cates that the calculated potential curves represent glob-
ally reliable description of the Cd – noble gas interaction
at least for short and intermediate interatomic distances.
However, the quality of the theoretical potentials can only
be judged by comparison with experimental data. One of
the purposes of the present work is to investigate how well
these potentials reproduce the experimental line width
and shift parameters using accurate quantum-mechanical
treatment of the collision dynamics. These potentials were
computed at over 40 internuclear distances in the range
3 < R < 30a0 what cover the relevant region for scatter-
ing calculations. Explicit representations of these poten-
tials required in numerical calculations were obtained by
the cubic spline fitting between the ab initio points.

In the present work the CC equations were solved by
using the log-derivative method of Johnson [35] with an
integration step equal to 0.01a0. The integration have
been performed from R = 3a0 up to some Rmax value
at which convergent S-matrix elements were extracted.
The real and imaginary parts of the pressure broadening
cross-section defined by equation (7) were calculated for
the relative kinetic energy in the range 0 < E ≤ 0.06 au,
wide enough to perform the energy averaging for higher
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Table 1. Pressure width coefficients (in units of 10−20 cm−1/atom cm−3) for the 326.1 nm Cd line perturbed by noble gases
at 468 and 724 K. For experimental data the values of standard uncertainty are given.

T = 468 K T = 724 K
Perturber βcc βv βexp βsc βcc βv βexp βsc

He 1.114 1.055 1.22 ± 0.03a 1.40a 1.283 1.261 − −
Ne 0.722 0.764 0.70 ± 0.02a 0.84a 0.806 0.857 0.715 ± 0.004e 0.750e

Ar 1.293 1.428 1.04 ± 0.02b 1.74b 1.453 1.618 1.060 ± 0.006f 1.334f

Kr 1.157 1.212 1.00 ± 0.03c 1.47c 1.371 1.299 1.147 ± 0.011g 1.182g

Xe 1.263 1.297 1.32 ± 0.03d 1.85d 1.466 1.487 1.257 ± 0.006h 1.330h

a Refs. [20,21], b Ref. [22], c Ref. [23], d Ref. [24], e Ref. [16], f Ref. [17], g Ref. [18], h Ref. [19].

Fig. 1. Width cross-sections plotted as a function of kinetic
energy for the Cd 326.1 nm line perturbed by noble gases.

temperatures (T > 400 K). For energies below the excita-
tion threshold ε(5 3P2) the closed channels associated with
j = 2 were retained in our calculations. The resulted width
and shift cross-sections for noble gas perturbers from He
to Xe are plotted as a function of kinetic energy in Fig-
ures 1 and 2, respectively.

The width cross-sections for all perturbers exhibit a
common feature, they decrease rapidly with energy and
then for E > 0.01 au monotonically approach their limit-
ing values. The shift cross-sections displayed in Figure 2
show slightly more complex structure. At low energies
they are negative except of the cross-section for helium
which is positive for all considered energies. For the case
of neon the shift cross-section change sign in the vicinity
of 0.005 au and then attains positive asymptotic value.
Furthermore, we observe in Figure 2 that the shift cross-
sections at sufficiently high energies also approach their
asymptotic values.

Since both the line width and shift at low pressure
depend linearly on the density of perturbing atoms and
for isolated line σs reduces to a single complex number
it is convenient to rewrite equations (5, 6) in the ab-
breviated form: Γ = nbβ and ∆ = nbδ, where β and
δ are the pressure width and shift coefficients, respec-
tively. Scattering calculations were done at a variety of
translational energies in order to perform thermal averag-
ing over Maxwellian distribution. The accurate integration
over perturber velocities was performed using Simpson’s
methods.

Fig. 2. Shift cross-sections plotted as a function of kinetic
energy for the Cd 326.1 nm line perturbed by noble gases.

Averages of the β and δ coefficients were calculated at
temperatures of 468 and 724 K, which exactly correspond
to the interferometric [20–24] and laser induced fluores-
cence [16–19] line broadening experiments by Bielski and
co-workers. The corresponding set of obtained results is
presented in Tables 1 and 2, together with experimental
and some other theoretical data. Calculations employing
semiclassical (SC) procedures have been performed previ-
ously for all these systems [16–24] exploiting the ab initio
potentials supplied by Czuchaj and co-workers [32–34] as
well as some model potential curves. In Tables 1 and 2
we have quoted only the SC results obtained for the
ab initio potentials. The SC calculations are based on the
Baranger’s impact theory with the use of semiclassical de-
scription of scattering. Straight-line perturber trajectories
were used to calculate the β and δ coefficients.

A comparison of CC and SC line width coefficients in
Table 1 for 468 K shows that the CC results are signifi-
cantly smaller and generally agree better with experimen-
tal data for all perturbers. However, the direct compari-
son is obscured by the use of slightly different version of
Czuchaj’s potential curves in the SC calculations. For the
temperature of 724 K the calculated width coefficients re-
veal on average about 15% growth, which is not seen in
the experimental data except of the value for Kr which
is about 15% larger. Also no clear temperature depen-
dence of the width coefficients was seen in the experimen-
tal data for He and Ar reported by Dietz et al. [36]. In
order to understand this temperature behavior the line
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Table 2. Pressure shift coefficients (in units of 10−20 cm−1/atom cm−3) for the 326.1 nm Cd line perturbed by noble gases at
468 and 724 K. For experimental data the values of standard uncertainty are given.

T = 468 K T = 724 K
Perturber δcc δv δexp δsc δcc δv δexp δsc

He 0.234 0.237 0.02 ± 0.02a 0.15a 0.269 0.241 − −
Ne –0.099 –0.111 –0.13 ± 0.01a 0.08a –0.071 –0.075 –0.090 ± 0.005e –0.142e

Ar –0.392 –0.355 –0.29 ± 0.03b –0.58b –0.499 –0.518 –0.387 ± 0.004f –0.358f

Kr –0.199 –0.230 –0.27 ± 0.03c –0.77c –0.245 –0.268 –0.338 ± 0.005g –0.181g

Xe –0.269 –0.263 –0.31 ± 0.02d –0.83d –0.325 –0.336 –0.348 ± 0.002h –0.322h

a Refs. [20,21], b Ref. [22], c Ref. [23], d Ref. [24], e Ref. [16], f Ref. [17], g Ref. [18], h Ref. [19].

Table 3. De-excitation rates (in units of cm3 s−1) for the j → j′ fine-structure transitions in collisions of Cd with noble gases.
Numbers in parentheses represent powers of 10.

T = 468 K T = 724 K
Perturber 1 → 0 2 → 0 2 → 1 1 → 0 2 → 0 2 → 1

He 0.466(–16) 0.201(–16) 0.168(–15) 0.459(–15) 0.303(–16) 0.846(–15)
Ne 0.112(–18) 0.570(–17) 0.456(–16) 0.636(–18) 0.833(–17) 0.519(–16)
Ar 0.696(–20) 0.265(–18) 0.508(–17) 0.102(–18) 0.783(–18) 0.779(–17)
Kr 0.129(–20) 0.563(–19) 0.285(–17) 0.468(–20) 0.290(–18) 0.823(–17)
Xe 0.109(–18) 0.150(–16) 0.211(–14) 0.180(–18) 0.109(–15) 0.745(–14)

Fig. 3. Temperature dependence of the width coefficients for
the Cd 326.1 nm line perturbed by noble gases.

shape coefficients were calculated for a grid of tempera-
tures over the range 300−1000 K. Figures 3 and 4 illus-
trate the temperature dependence of the β and δ coeffi-
cients, respectively. We observe in Figure 3 that the width
coefficients for all perturbers rise very slowly with increas-
ing temperature. Within the considered range of temper-
ature the growth is nearly linear for He, Ne and Kr.

For the case of line shift the results in Table 2 show
again that for 468 K the CC coefficients are in better
agreement with experimental data than the SC ones ex-
cept of shifts for helium. The poor agreement for helium
is also seen for semiclassical results. Inspection of the
shifts for 724 K shows that generally the CC results are
in slightly worse agreement with experimental data than
the SC values. The calculated temperature behavior of the
shift coefficients displayed in Figure 4 indicates for linear
and rather weak dependence on temperature for all con-
sidered perturbers.

In order to assess the influence of the proper thermal
averaging on the theoretically predicted line shape coeffi-

Fig. 4. Temperature dependence of the shift coefficients for
the Cd 326.1 nm line perturbed by noble gases.

cients we performed additional calculations in which the
averages over the Maxwellian distribution were replaced
by fixed mean velocity, which corresponds to the temper-
ature T , under consideration. The respective coefficients β
and δ are labeled by superscript v in Tables 1 and 2. The
most immediate observation is that the CC coefficients
using the v approximation are in fairly good qualitative
agreement with those explicitly thermally averaged. For
the considered Cd line the error does not exceed 10% for
all perturbers.

The 53Pj triplet S-matrix elements were also used to
calculate the fine-structure-changing cross-sections from
equation (18). The cross-sections were subsequently aver-
aged over Maxwellian distribution of relative velocity and
the corresponding thermal rates, kj→j′ = 〈vσj→j′ 〉, were
obtained. De-excitation rates for the three independent
intramultiplet transitions for the two considered temper-
atures are presented in Table 3. We found that the rate
coefficients are rather small (< 10−14 cm3 s−1), which is
consistent with previous experimental data for collisions of
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Cd with CH4 [37] and He [38]. We also found that among
the three transitions the j = 2 → 1 is the strongest for all
considered cases. A more careful analysis of the data in
Table 3 shows that: k2→1 > k2→0 > k1→0, except for he-
lium where the 1 → 0 transition is favored over the 2 → 0
transition. The small cross-sections for intramultiplet re-
laxation of Ca(53Pj) indicate that an influence of inelastic
collisions on the investigated collisional broadening is neg-
ligible for this system.

Our theoretical results are generally in satisfactory
agreement with the experimental data. The existing dis-
crepancies could arise both from the choice of interaction
potentials and from simplifications in the collision dynam-
ics. In our opinion the applied potentials are primarily
responsible for this differences between theory and exper-
iment.

The work reported here was supported by Polish Committee
for Scientific Research (KBN) Grant No. 5 P03B 066 20.
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18. R.S. Trawiński, A. Bielski, D. Lisak, Acta Phys. Pol. A 99,
243 (2001)

19. A. Bielski, R. Ciury�lo, J. Domys�lawska, D. Lisak, R.S.
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